Menu
Menu
Learning from data

Learning from data

How can universities make engagement more meaningful and improve student outcomes? Jon Baldwin of Tribal Group writes about this burning question as a new academic year dawns.

Retention and other measures of student success can be positively influenced by the use of learning analytics to identify students at risk, combined with an effective intervention programme.

These are indeed trying times for the higher education (HE) providers.

Nowhere has this been more apparent than at the recent HE Fest hosted by Tribal Group in Queenstown, where educators from around the region gathered to discuss issues, challenges and share insights and possible solutions.

The burning question remains as a new academic year dawns– how can universities make engagement more meaningful and improve student outcomes? The key to getting on the front foot of the student HE experience is data.

Ian Marshman, University of Melbourne and keynote speaker at Tribal Group’s APAC HE Fest suggests that data could set universities on the right path today to better plan for the future.

“There is now this new generation of systems, learning analytics and business analytics which certainly compel universities to move on and shape their strategy by informed decision making, based on information and data rather than leading solely by intuition.”

Inside the field of learning analytics

The field of learning analytics is undoubtedly one that is compelling for higher education, as institutions around the globe are increasingly challenged to meet rising expectations in a rapidly changing environment. Shifts to outcome-based assessment and reporting models are placing an increased responsibility on institutions to understand the patterns and trends that impact student engagement and ultimately, their success.

Presently, universities identify students who are at risk of dropping out of their course, or who are not making the desired academic progress is based on a limited set of downstream indicators While these indicators, such as academic results remain very important, universities can unlock powerful insights and improve student journeys further by looking at the data that reside within university services.

Intervention strategies with struggling students could be extremely important for institutions: if you are identified as at risk but left alone you are not only considerably more likely to fail but your result is likely to be much worse too.

Jon Baldwin, Tribal Group

By tracking student interactions with university services, educators are able to predict student performance and identify potential “at-risk” students, so interventions can be made at an early stage to fully enable them to meet their potential.

Staff can access information about levels of student engagement, to quickly identify students who are at risk of not completing their course successfully. It can also provide information that helps them to understand the student cohort and what factors could be changed to bring about improvements to the student experience and increase retention.

The University of Wolverhampton in the UK partnered with Tribal Group to develop the learning analytics software Student Insight, which was built using the data warehouse within the university.

The software uses a predictive model to predict student academic success based on demographics, social background, summative assessments and activity data from the library, VLE (Virtual Learning Environment) and campus PC usage. The project determined that the model can predict student success with an accuracy of 70 per cent.

Predictive modelling for intervention programmes

Tribal Group work alongside 50 institutions and multiple suppliers with JISC, the higher further education and skills sectors’ not-for-profit organisation for digital services and solutions. The effective learning analytics project is one of the largest consortium projects of its kind currently running.

In January 2017, JISC highlighted in its report studies in the US and Australia using control groups that show that retention and other measures of student success can be positively influenced by the use of learning analytics to identify students at risk, combined with an effective intervention programme.

At New York Institute of Technology, recall of their predictive model is 74 per cent; in other words, approximately three out of every four students who do not return to their studies the following year are predicted as at risk by the model. This high recall factor is reported to be due to the choice of model, careful testing of alternatives and the inclusion of a wider range of data than other similar models: financial and student survey data were included in the model as well as pre-enrolment data.

At the University of South Australia 730 students across a range of courses were identified as at risk.

Of the 549 who were contacted, 66 per cent passed with an average Grade Point Average (GPA) of 4.29. 52 per cent of at risk students who were not contacted passed with an average GPA of 3.14.

This appears to be a significant finding, implying that intervention strategies with struggling students could be extremely important for institutions: if you are identified as at risk but left alone you are not only considerably more likely to fail but your result is likely to be much worse too.

At the University of New England, New South Wales, the dropout rate was cut from 18 per cent to 12 per cent during early trials of their “Automated Wellness Engine”, which analyses data from seven corporate systems every night and runs a model based upon 34 triggers identified as suggesting at-risk behaviour.

While many institutional initiatives are still at an early stage, the studies to date and the work we have undertaken with some of these institutions certainly suggest huge opportunities from data to make student engagement more meaningful and successful. Analytics enable staff to better understand student needs and where they may end up.

All across the world, the challenge of widening successful participation for higher education remains. As local educators brace themselves for the start of many hopeful student journeys this year, the potential of data is worth considering in underpinning the success of those journeys.

Read more: How to build an army of cybersecurity experts

Jon Baldwin is managing director - higher education at Tribal Group. He joined Tribal after an extensive career in tertiary education, including deputy vice chancellor (professional services) at Murdoch University in Perth, and registrar at the University of Warwick.

Send news tips and comments to divina_paredes@idg.co.nz

Follow Divina Paredes on Twitter: @divinap

Follow CIO New Zealand on Twitter:@cio_nz

Sign up for CIO newsletters for regular updates on CIO news, views and events.



Join the CIO New Zealand group on LinkedIn. The group is open to CIOs, IT Directors, COOs, CTOs and senior IT managers.

Join the newsletter!

Error: Please check your email address.

Tags universitybusiness intelligencedisruptioneducationcloud computingDXchange managementanalyticstertiary educationdataCIO upfrontCIO rolebig data

More about APACindeedInsightMurdoch UniversityTechnologyTwitterUniversity of MelbourneUniversity of New EnglandUniversity of South Australia

Show Comments

Market Place